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We consider the branching and annihilating random walk A → 2A and 2A → 0 with
reaction rates σ and λ, respectively, and hopping rate D, and study the phase diagram
in the (λ/D, σ/D) plane. According to standard mean-field theory, this system is in
an active state for all σ/D > 0, and perturbative renormalization suggests that this
mean-field result is valid for d > 2; however, nonperturbative renormalization predicts
that for all d there is a phase transition line to an absorbing state in the (λ/D, σ/D)
plane. We show here that a simple single-site approximationreproduces with minimal
effort the nonperturbative phase diagram both qualitatively and quantitatively for all
dimensions d > 2. We expect the approach to be useful for other reaction-diffusion
processes involving absorbing state transitions.
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1. INTRODUCTION

Branching and annihilating random walks (BARW(1)) have been the focus of
much attention,(2−7) as they are among the simplest models of nonequilibrium
critical phenomena observed in physics and other sciences (for reviews see, e.g.,
Refs. 8–10). They are generic reaction-diffusion processes in which particles of
some species A move stochastically on an arbitrary d-dimensional lattice and are

subject to the creation and annihilation reactions A
σm−→ (m + 1)A and k A

λk−→ 0.
The nonequilibrium phase transitions of these models are known to belong to
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two distinct universality classes, depending on the parity of m and k: the “Parity
Conserving” class (for m and k even) and the “Directed Percolation” class (for m
odd). (5,8) We are interested here in BARW belonging to the Directed Percolation
class, which are generally denoted “odd-BARW.”

The simplest odd-BARW, which in this work we will call for short the
“OBA model” (odd branching and annihilating walks), is defined by

OBA model

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A
σ→ 2A

2A
λ→ 0

A∅ D→ ∅A

(1.1)

where σ and λ are on-site creation and annihilation rates, respectively, and D is a
hopping rate between adjacent sites. If the lattice has coordination number c, this
means that a particle will leave its lattice site at a rate cD. Since it captures the
essential critical properties of its entire class, (5) our focus will be specifically on the
OBA model. Although it is well-established that the OBA model is in the Directed
Percolation universality class, (5) it has appeared much harder to determine its
phase diagram, and this is the subject of this paper.

In standard mean-field (MF) theory(5,8) the OBA model is described by the
rate equation

∂ρ

∂t
= D�ρ + σρ − λρ2, (1.2)

where ρ(r, t) ≥ 0 is the particle density. For all branching ratios σ ≥ 0 Eq. (1.2)
has two spatially uniform stationary solutions, the “absorbing state” ρ0 = 0 and the
“active state” ρ∗ = σ/λ. For σ > 0 the active state is stable and is reached expo-
nentially fast in time from any initial state with ρ > 0. For σ = 0 the OBA model
coincides with the pure pair annihilation process (PA) and corresponds to a critical
point in parameter space at which the absorbing state is reached according to the
power law decay ρ(r, t) ∼ t−1.

On a lattice in finite dimension d the question of the stationary states of (1.1)
is much more difficult to answer. For σ = 0, i.e. for the PA, perturbative renormal-
ization group analysis has shown(5,11) that below the critical dimension dc = 2 the
decay to the absorbing state slows down due to depletion zones (anticorrelations)
in the spatial density distribution and follows the power law ρ(r, t) ∼ t−d/2.

Early simulations of the OBA model (3,4) showed that for d = 1 and d = 2
absorbing states exist even in an interval of branching ratios σ > 0, in contradis-
tinction to MF theory. This indicates, therefore, that low-dimensional fluctuations
qualitatively change the “phase diagram” of this system in the (λ, σ ) plane.

In a seminal paper, Cardy and Täuber (5) formulated a field theory for general
BARW, which they analyzed by perturbative renormalization group techniques.
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For the OBA model they concluded that in dimension d ≤ 2 a minimum branching
ratio σc is needed in order for the system to be able to sustain an active state. For
small λ the critical value σc behaves as

σc � D
( λ

2Dπε

)2/ε

, λ → 0, d = 2 − ε. (1.3)

The analysis by Cardy and Täuber is valid for small λ and appears to break down
for d > 2. (5) However, since λ becomes irrelevant above two dimensions and since
from the PA analysis one can assume that fluctuations are also small for d > 2 in
the OBA model when σ is small, Cardy and Täuber argue that MF theory should
be restored for d > 2, that is, the system should be active for all σ > 0. (5)

This picture was modified by an analysis due to Canet et al. (6,7) who employed
nonperturbative renormalization group (NPRG) techniques. They demonstrated
that in all finite dimensions d > 2 there is a threshold λc such that

(i) for λ < λc the MF result of an active state for all σ > 0 remains true, but
(ii) for λ > λc there is an active state only when σ > σc(λ).

Hence according to the work of Refs. 6 and 7 standard MF theory fails
dramatically for this system.

Following this failure, the OBA model has been re-investigated(13) by means
of an alternative MF type approximation, namely the “cluster MF method,” also
called “generalized MF method” and originally proposed for non-equilibrium
systems in Ref. 12. This approach consists in considering the master equation for
blocks of N sites and truncating the hierarchy of probability distributions, so that
it can be solved numerically. From cluster MF calculations of the OBA model
Ódor (13) has confirmed for N > 2 the existence of a finite threshold λc > 0 above
which an inactive phase exists.

The purpose of this paper is to set up a simple analytically tractable approx-
imation that correctly predicts the existence of an absorbing phase in all finite
dimensions in the appropriate domain of the parameter space. We propose a new
approach, to be called single-site approximation, which allows diffusion steps to
take place only to empty sites. The underlying idea is that in dimensions d > 2
where the intersection of two directed random walks becomes unlikely, the de-
struction mechanism that drives the system to an absorbing phase is dominated by
“on-site” annihilation of a particle with its own offspring on the same site, and that
we may neglect the annihilation of particles that meet due to random diffusion.
Hence the single-site approximationhas the nature of a tree diagram approxima-
tion in coordinate space. It has the virtue that it leads to what is essentially a
single-site problem which allows for analytic results to be easily obtained. For the
OBA model these results closely reproduce the NPRG phase diagram, including
its dimensional dependence, for all dimensions d > 2.
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We believe that in future studies this method may find application to other
reaction-diffusion processes having absorbing states and that it may provide
essential information about their phase diagrams ahead of any more sophisticated
work on them.

In Sec. 2 we define the single-site approximationfor the OBA model, which
for short we will refer to as the “SS-OBA model.” We obtain its solution in
Sec. 2.2. We show in Sec. 2.3 that the model tends to an absorbing state in a
specified region of the (λ/D, σ/D) plane whose shape we discuss in Sec. 2.4.
Our results are qualitatively and quantitatively fully consistent with the NPRG
results. In Sec. 3 we add various comments to the discussion. Section 4 is a brief
conclusion.

2. SINGLE-SITE APPROXIMATION

2.1. Definition

We define the SS-OBAmodel as follows. The stochastic motion of its particles
is governed by the rules:

(i) Each particle is subject to the on-site creation reaction A → 2A at a rate σ .
(ii) Each pair of particles on the same site is subject to the annihilation reaction

2A → 0 at a rate λ.
These two rules are therefore the same as in the original OBA model.

(iii) Each particle may hop away from its site at a rate cD and always arrives on
an empty lattice site (of some abstract lattice that need not be specified—
say for instance to one of the next nearest neighbours if all neighbouring
sites are occupied).
This rule differs from the corresponding one in the OBA model; it means
that in the SS-OBAmodel the notion of lattice structure is lost.

For D = 0 the two models are identical; we therefore expect the
SS-OBA model to be a good approximation of the OBA model in the small
diffusion regime.

2.2. Solution

To see that the SS-OBA model is exactly soluble, it suffices to note that no
particle ever enters an occupied site from the outside and that therefore each active
site has a dynamics independent of the others; a site’s occupation number evolves
only due to on-site creation and annihilation transitions and to departures. The
solution therefore decomposes into the analysis of the time evolution on a single
site given its initial condition at some time t0, and the analysis of the coupling
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between sites due to the diffusion mechanism. These two questions are studied in
Subsections 2.2.1 and 2.2.2, respectively.

2.2.1. Single-Site Problem

Let P(n, t) be the probability that a specific site contains exactly n particles
at time t . Then this probability satisfies the master equation

d

dt
P(n, t) = σ (n − 1)P(n − 1, t) − σn P(n, t)

+ 1
2λ(n + 1)(n + 2)P(n + 2, t) − 1

2λn(n − 1)P(n, t)

+ cD(n + 1)P(n + 1, t) − cDn P(n, t) (2.1)

for n = 0, 1, 2, . . . and with the convention that P(−1, t) ≡ 0. Here the lattice
coordination number c is the only parameter reminiscent of the original lattice.
We introduce the scaled variables

τ = λt, σ̃ = σλ−1, D̃ = cDλ−1 (2.2)

and set P(n, t) = p(n, τ ). Defining the vector p(τ ) = (p(0, τ ), p(1, τ ), . . .) we
may write (2.1) as

dp

dτ
= Mp, (2.3)

where M is the tetradiagonal matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 D̃ 1 0 0 . . .

0 −D̃ − σ̃ 2D̃ 3 0 . . .

0 σ̃ −2D̃ − 2σ̃ − 1 3D̃ 6 . . .

0 0 2σ̃ −3D̃ − 3σ̃ − 3 4D̃ . . .

0 0 0 3σ̃ −4D̃ − 4σ̃ − 6 . . .

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.4)

Equations (2.3) – (2.4) constitute a problem with two parameters, D̃ and σ̃ . Except
when σ̃ = D̃ = 0 we expect Eq. (2.3) to have only a single stationary solution, viz.
pst(n) = δn,0. The reason is that as n gets large, the annihilation rate dominates
the creation by one order in n, which prevents “escape” of the site occupation
number to n = ∞; the occupation number, therefore, can get caught only in
n = 0, even though for large σ̃ it may be in a long-lived “metastable” state. When
σ̃ = D̃ = 0 the particle number can change only by pair annihilation, which is a
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parity conserving process. There will then be two independent stationary states,
viz. pst

0 (n) = δn,0 and pst
1 (n) = δn,1.

We will write Gnn0 (τ − τ0), where τ − τ0 ≥ 0 and n, n0 = 0, 1, 2, . . ., for
the solution of Eq. (2.3) with initial condition p(n, τ0) = δnn0 . It is not possible
in the general case to write this solution in an explicit closed form, but we will
suppose that all its essential properties can be determined. In particular we assume
that, except when σ̃ = D̃ = 0, the function Gnn′ (τ ) tends to zero exponentially at
some time scale 1/µ1(σ̃ , D̃),

Gnn′ (τ ) ∼ e−µ1τ , τ → ∞, (σ̃ , D̃) �= (0, 0), n, n′ > 0, (2.5)

with µ1(σ̃ , D̃) > 0. When σ̃ = D̃ = 0 we have µ1(0, 0) = 0, which signals the
degeneracy of the stationary state. This completes the discussion of the single site
problem.

2.2.2. Coupling Between Sites

Let at time τ = 0 the initial state be such that there are Sn(0) sites with
occupation number n, where n = 1, 2 . . .. The total initial particle number N (0)
is then given by

N (0) =
∞∑

n=1

nSn(0). (2.6)

We are interested in the average number 〈N (τ )〉 of particles at some arbitrary
instant of time τ > 0; here 〈. . .〉 denotes an average with respect to the initial
distribution of the Sn(0) and the stochastic time evolution. We will proceed by first
calculating the averages 〈Sn(τ )〉.

There are two types of sites, those that are occupied initially, and those that
get occupied only later during the time evolution due to diffusion steps. We denote
the contribution of these two types of sites by superscripts (0) and (1), respectively,
so that

〈Sn(τ )〉 = 〈Sn(τ )〉(0) + 〈Sn(τ )〉(1). (2.7)

Upon considering the time evolution of the initially occupied sites we find

〈Sn(τ )〉(0) =
∞∑

n′=1

Gnn′ (τ )Sn′(0). (2.8)

Throughout the time interval 0 < τ ′ < τ new occupied sites are created due to
diffusion steps at a rate D̃〈N (τ ′)〉. Hence

〈Sn(τ )〉(1) = D̃

∫ ∞

0
dτ ′ Gn1(τ − τ ′)〈N (τ ′)〉, (2.9)
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where the upper boundary of the integral has been sent to ∞ exploiting that Gnn′ (t)
vanishes for t < 0. Summing Eqs. (2.8) and (2.9) yields

〈Sn(τ )〉 =
∞∑

n′=1

Gnn′ (τ )Sn′(0)

+ D̃

∫ ∞

0
dτ ′ Gn1(τ − τ ′)〈N (τ ′)〉. (2.10)

When multiplying this equation by n and summing on n we obtain

〈N (τ )〉 =
∞∑

n′=1

∞∑

n=1

nGnn′ (τ )Sn′(0)

+ D̃

∫ ∞

0
dτ ′

∞∑

n=1

nGn1(τ − τ ′)〈N (τ ′)〉, (2.11)

which is a closed equation for 〈N (τ )〉.
For convenience let us now restrict the initial states to those that have only

singly occupied sites; that is, we take Sn(0) = N (0)δn1. This clearly does not affect
the long time behaviour of the system so it does not restrict the generality of our
argument. Furthermore we define

H (τ − τ ′) =
∞∑

n=1

nGn1(τ − τ ′). (2.12)

When substituting the previous definitions in Eq. (2.11) we find

〈N (τ )〉 = N (0)H (τ ) + D̃

∫ ∞

0
dτ ′ H (τ − τ ′)〈N (τ ′)〉. (2.13)

In terms of the Laplace transforms

N̂ (s) =
∫ ∞

0
dτ e−sτ 〈N (τ )〉, Ĥ (s) =

∫ ∞

0
dτ e−sτ H (τ ), (2.14)

it becomes N̂ (s) = N (0)Ĥ (s) + D̃ N̂ (s)Ĥ (s), whence the solution

N̂ (s) = N (0)
Ĥ (s)

1 − D̃ Ĥ (s)
, (2.15)

which may be inverse Laplace transformed to 〈N (τ )〉. This completes the solution
of the average total particle number in the SS-OBA model.
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2.3. Existence of an Absorbing Phase

Because of Eqs. (2.12) and (2.5) the decay of H (τ ) will be characterized by
the same µ1 as that of Gnn′ (τ ). Let us suppose that H (τ ) = e−µ1τ , so that Ĥ (s) =
1/(µ1 + s). Then Eq. (2.15) implies that N̂ (s) = N (0)/(µ1 − D̃ + s), whence

〈N (τ )〉 = N (0)e−(µ1−D̃)τ . (2.16)

Therefore the condition for 〈N (τ )〉 to tend to zero is

µ1
(
σ̃ , D̃

) − D̃ > 0. (2.17)

The SS-OBA model has an absorbing phase in the region of parameter space
where Eq. (2.17) holds.

To analyze this equation we consider first the special case D̃ = 0. In this
case the SS-OBA model is described by a single-site master equation identical
to Eq. (2.1) but with D̃ = 0. It reaches the absorbing state exponentially fast at an
asymptotic rate µ1(σ̃ , 0) which for 0 < σ̃ < ∞ satisfies

µ1(σ̃ , 0) > 0. (2.18)

We note that µ1(0, 0) = 0 as emphasized in Sec. 2.2.1 and that we must further-
more have limσ̃→∞ µ1(σ̃ , 0) = 0, since the decay of the metastable state becomes
infinitely slow in that limit. We invoke now continuity of µ1(σ̃ , D̃) in its second
argument and conclude that for all values of σ̃ in (0,∞) there exists a positive
threshold value Dc(σ̃ ) such that Eq. (2.17) is satisfied for all 0 ≤ D̃ < Dc(σ̃ ), i.e.
the stationary state of the SS-OBA model is absorbing for all 0 ≤ D̃ < Dc(σ̃ ).
Reverting to the original parameters this means that for all ratios 0 < σ/λ < ∞
there exists a Dc(σ/λ) such that for

λ

D
>

c

Dc(σ/λ)
(2.19)

the stationary state is absorbing. Written this way, inequality (2.19) allows for
comparison with the phase diagrams of Ref. 7 which are plotted in the plane of
abscissa λ/D and ordinate σ/D and are displayed in Fig.1. First of all Eq. (2.19)
implies the existence for large enough λ of an absorbing region in the phase
diagram, which is in full agreement with the NPRG results of Fig. 1.Furthermore,
as the spatial dimension d tends to infinity, so does the lattice coordination number
c (typically linearly with d), and Eq. (2.19) shows that the region of phase space
to which our proof applies, recedes to infinity as c → ∞. This, too, corroborates
the NPRG results of Ref. 7 which indicate that an absorbing phase exists in all
finite dimensions. It also matches with standard MF theory, which has effectively
d = ∞, and no absorbing phase in this limit.

One can take a further step and analyze the shape of the phase transition
line between the active and absorbing phases obtained in the SS-OBA model. As
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Fig. 1. (color online) Phase diagram of the OBA model (1.1) ensuing from the nonperturbative
renormalization group (NPRG) in dimensions d = 1, . . . , 6, from Canet et al. (7) For each dimension,
the active phase lies on the left and the absorbing phase on the right of the transition line. For d > 2
this line comes into the λ/D axis at some threshold value λc/D with a finite slope αNPRG ≈ 2.3. The
spacing between the phase transition lines for two successive dimensions is �NPRG ≈ 2.2.

shown in the next section, it fits with the NPRG results even on a quantitative
level.

2.4. Analysis of the Phase Diagram

In this section we analyze in greater details the location of the phase transition
line in the (λ/D, σ/D) plane defined by Eq. (2.19). We show that it intersects the
λ/D axis at some finite value λ/D = λc/D, and with a positive slope. To do so
we determine µ1(σ̃ , D̃) for arbitrary D̃ perturbatively in small σ̃ . To linear order
in σ̃ , the result, derived in the Appendix, is

µ1(σ̃ , D̃) = D̃ − D̃ − 1

D̃ + 1
σ̃ + O(σ̃ 2). (2.20)

Combining this expression with criterion (2.17) we see that for σ̃ → 0, the system
will tend towards an absorbing state at the condition that

D̃ < 1 or λ > λc , (2.21)

where

λc/D = c = 2d, (2.22)

and in which the last equality is for the case of a hypercubic
d-dimensional lattice.
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The variation of the threshold λc/D with the dimension has also been
obtained(7) within NPRG. Indeed, from Fig. 1, which is for hypercubic lat-
tices, this variation appears to be linear, λc/D � �NPRGd with the slope equal
to�NPRG ≈ 2.2 (as estimated in Ref. 7). This result is in very close agreement
with our Eq. (2.22), which yields � = 2 for the same slope.

The second order correction in σ̃ to µ1 can also be worked out, as shown in
the Appendix, and allows for the determination of the slope of the transition line.
To second order the smallest eigenvalue is given by

µ1(σ̃ , D̃) = D̃ − D̃ − 1

D̃ + 1
σ̃ + 2(2D̃2 − 3D̃ − 3)

(2D̃ + 3)(D̃ + 1)3
σ̃ 2 + O(σ̃ 3). (2.23)

According to the criterion of Eq. (2.17) the phase transition line between the active
and the absorbing phases is defined by the condition µ1 − D̃ = 0. Substituting
(2.23) in this condition, dividing out σ̃ , writing σ̃ = (σ/D)(D̃/c), and using that
σ̃ , D̃ − 1, and λ/D − c are of the same order we find

σ

D
= (2D̃ + 3)(D̃ + 1)2

2D̃(2D̃2 − 3D̃ − 3)
c(D̃ − 1) + O

(
(D̃ − 1)2

)

= 5

2

(
λ

D
− c

)

+ O
(( λ

D
− c

)2
)

, (2.24)

=2

-D>0
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σ
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λ
D
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D
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Fig. 2. (color online) Phase diagram of the OBA model (1.1) according to the single-site approxima-
tionof this work, for the dimensions d and d + 1. The circle at infinity has been represented by a dashed
arc. The phase transition lines come into the λ/D axis with a slope α = 5

2 and for two successive
dimensions have a spacing � = 2. This phase diagram is very close qualitatively and quantitatively to
the one of Fig. 1.
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which is the equation for the phase transition line near the threshold point
(λ/D, σ/D) = (c, 0).

The slope α at the threshold appears to be α = 5
2 , independently of c, i.e.,

of the dimension d. The value α = 5
2 compares favorably with the NPRG phase

diagram of Fig. 1, where the phase transition lines appear to be merely drifting
as the dimension grows, with a quasi-constant slope αNPRG numerically equal to
αNPRG ≈ 2.3.4

Figure 2 summarizes the results of this section and shows that our single-
site approximationcaptures all the essential features of phase diagrams of the
OBA model in d > 2. It allows in particular to probe the dependence on the
dimension, which is beyond the scope of standard MF approach.

3. DISCUSSION

In addition to the discussion that has accompanied the above determination
of the phase diagram, several points deserve some comments. We provide them
here.

3.1. Order Parameter

Our first remark concerns the active state. According to Eq. (2.17) this state
is characterized by the inequality µ1 − D̃ < 0. In the region of the phase diagram
where this inequality holds, Eq. (2.16) shows that the total particle number in-
creases exponentially in time. Nevertheless, in this regime the average number of
particles per occupied site, 〈n〉occ, is well defined in the limit τ → ∞. One may
consider this quantity as the order parameter of the SS-OBA, but it should be
emphasized that the usual order parameter is instead ρ = q〈n〉occ where q is the
fraction of occupied sites.

In the SS-OBA model each diffusion step takes the diffusing particle to an
empty site. For the discussion of the phase diagram in the preceding sections there
has been no need to specify whether this is a site that has perhaps previously
been occupied or whether it is an entirely new site. Therefore the fraction 1 − q
of empty sites, and hence the usual order parameter ρ, remain undefined in the
SS-OBA model.

Hence a calculation of ρ within our approach would require further elab-
oration and/or modification of the model. A way to do this was pointed out by
Dickman,(15) but goes beyond our more restricted purpose of analytically studying
the phase diagram.

4 The reaction rates defined in Eq. (1) of Ref. 7 are such that one has the correspondence σNPRG = 2σ .
Figure 1 has been plotted with the definition of this work.
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3.2. Reformulation

The SS-OBA model may be formulated in an equivalent way which preserves
the original lattice structure. This reformulation requires that we distinguish be-
tween two notions that coincided in the definition of Sec. (2.1), viz. between a
“lattice site” in its usual sense and a “family” of particles: a family consists of a
particle having diffused to a (now not necessarily empty) lattice site, together with
all the offspring it has generated on that site and which has never left it. Initially
all particles on the same site are considered to constitute a family. Consequently,
the particles on each site may at any time be partitioned into families. When a
particle performs a diffusion step, it leaves its family and starts a family of its own
on its arrival site, where other families may or may not already be present.

We may then replace rules (ii) and (iii) of Sec. 2.1 by the following:

(ii) Each particle can annihilate (at a rate λ per pair) only with other members
of its own family on that site.

(iii) Each particle performs diffusion steps to neighboring sites with a rate D
per transition; for coordination number c this means that a particle will
leave its site at a rate cD.

This reformulation of the SS-OBA does not change the mathematics and,
in particular, leads to the same 〈N (τ )〉 as found in Sec. 2.2. It has the merit of
bringing out clearly that two-particle annihilation in the SS-OBA model occurs
under more restrictive conditions than in the original OBA model. This makes it
tempting to believe that the average total particle number in the SS-OBA model
is an upper bound to the same quantity in the OBA model. If true, our calculation
would constitute an exact proof of the existence of an absorbing state in the OBA
model. We have not, however, been able to prove this upper bound property and
leave it as an open problem.

3.3. Below Two Dimensions

Our final remark concerns what happens when the spatial dimension d is
equal to or less than the critical dimension dc = 2 for pure pair annihilation.
For d ≤ dc the renormalisation group (both perturbative and nonperturbative)
predicts that in the OBA model the threshold λc vanishes. In the SS-OBA model
this would correspond for instance to Dc(0) → ∞ in Eq. (2.19) for d ≤ 2. We
have not investigated this point further, since the behaviour of the system for
small λ/D and σ/D corresponds to the large diffusion regime, for which we
do not a priori expect the SS-OBA model to be a good description of the
OBA model.
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4. CONCLUSION

We have formulated a new approximation for reaction-diffusion problems
with an absorbing-state transition. Its characteristic feature is that it forbids anni-
hilation reactions when one or more of the participating particles have moved from
the site where they were originally created. The approach then leads to what is es-
sentially a single-site calculation, which allows the consequences to be determined
analytically. We have applied the approximation to the OBA model A → 2A and
2A → 0. We have shown that our theory produces qualitatively and quantitatively
the main properties of its phase diagram in agreement with the predictions of
nonperturbative renormalization but with far less effort.

A APPENDIX

We wish to calculate the smallest nonzero eigenvalue, called −µ1(σ̃ , D̃), of
the matrix M defined by Eq. (2.4). We will perform this calculation for arbitrary
D̃ and perturbatively for small σ̃ . The symbol 1 will denote the identity matrix.
For any matrix L with rows and columns labeled by n = 0, 1, 2, . . . , we write
L( j) for the matrix obtained from it by erasing its rows and columns of indices
n = 0, 1, . . . , j − 1; and we denote by [L]mm ′ the matrix obtained from it by
erasing the row m and column m ′. Hence M(0) = M and M(1) = [M]00.

If we modify the matrix M by suppressing its subdiagonal (of elements
0, σ̃ , 2σ̃ , 3σ̃ , . . .), it becomes upper triangular. This modified matrix has eigen-
values −νk given by its diagonal elements, i.e.,

νk = k D̃ + kσ̃ + 1

2
k(k − 1) ≡ ν

(0)
k + kσ̃ , k = 0, 1, 2, . . . . (A.1)

Hence its smallest nonzero eigenvalue is ν1 = D̃ + σ̃ . Restoring now the subdiag-
onal will change the νk and we will calculate this change perturbatively to second
order in σ̃ . That is, we will look for a solution µ = µ1 of Eq. (A.5) which has the
form

µ1 = ν1 + �ν1 (A.2)

with

�ν1 ≡ ν
(1)
1 σ̃ + ν

(2)
1 σ̃ 2 + O(σ̃ 3). (A.3)

The nonzero eigenvalues µ of M satisfy

det
(
M(1) + µ1(1)

) = 0. (A.4)

A cofactor expansion of (A.4) along the column n = 0 gives

−(ν1 − µ) det
(
M(2) + µ1(2)

) − σ̃ det
(
[M(1) + µ1(1)]10

) = 0, (A.5)



530 Canet and Hilhorst

whence, after we substitute (A.2) in (A.5),

�ν1 = σ̃
det

(
[M(1) + µ11(1)]10

)

det
(
M(2) + µ11(2)

) . (A.6)

The first order correction ν
(1)
1 follows from linearizing Eq. (A.6) in σ̃ , which

amounts to setting µ1 = ν
(0)
1 = D̃ and σ̃ = 0 in the two determinants of the

right hand side of (A.6). Both determinants then reduce to a product of diagonal
elements and identical factors cancel. Using the explicit expression of M together
with (A.3) we then get from (A.6) the first order coefficient

ν
(1)
1 = − 2D̃

D̃ + 1
, (A.7)

which leads to the result shown in Eq. (2.20).
The second order in σ̃ in the expansion (A.3) determines the slope at which

the phase transition line comes into the λ/D axis in the phase diagram. This second
order correction requires that one computes the determinant ratio in Eq. (A.6) to
linear order in σ̃ . Performing a cofactor expansion of both determinants along
their column n = 0, one gets

det
(
[M(1) + µ11(1)]10

) = 2D̃ det
(
M(3) + µ11(3)

)

−2σ̃ det
(
[[M(1) + µ11(1)]10]10

)
,

det
(
M(2) + µ11(2)

) = −(ν2 − µ1) det
(
M(3) + µ11(3)

)

−2σ̃ det
(
[M(2) + µ11(2)]10

)
. (A.8)

To obtain the expansions of Eq. (A.8) to first order in σ̃ , it suffices that we
evaluate the two determinantal coefficients of σ̃ in the second and fourth line
above to zeroth order. Furthermore, it turns out that the first order contributions
of det

(
M(3) + µ11(3)

)
in Eq. (A.8) cancel out in the ratio (A.6), so that only the

zeroth order of this determinant is actually needed as well. The zeroth order of all
the determinants is again obtained by setting µ1 = ν

(0)
1 and σ̃ = 0, upon which

the matrices become upper triangular and the determinants reduce to the products
of diagonal elements. Finally,

ν
(2)
1 = 2(2D̃2 − 3D̃ − 3)

(2D̃ + 3)(D̃ + 1)3
. (A.9)

By combining (A.2), (A.3), (A.7), and (A.9) one obtains the second order result
(2.23) exploited in the main text.
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